Частным случаем какой конфигурации является общая шина

Топологии физических связей (компьютерных сетей)

Как только компьютеров становится больше двух, возникает проблема выбора конфигурации физических связей или топологии. Под топологиейсети понимается конфигурация графа, вершинам которого соответствуют конечные узлы сети (например, компьютеры) и коммуникационное оборудование (например, маршрутизаторы), а ребрам — электрические и информационные связи между ними.

Число возможных конфигураций резко возрастает при увеличении числа связываемых устройств. Так, если три компьютера мы можем связать двумя способами, то для четырех компьютеров (рисунок 5) можно предложить уже шесть топологически различных конфигураций (при условии неразличимости компьютеров).

[9]

Рисунок 5 – Варианты связей компьютеров

Мы можем соединять каждый компьютер с каждым или же связывать их последовательно, предполагая, что они будут общаться, передавая друг другу сообщения “транзитом”. При этом транзитные узлы должны быть оснащены специальными средствами, позволяющими выполнять эту специфическую посредническую операцию. В роли транзитного узла может выступать как универсальный компьютер, так и специализированное устройство.

От выбора топологии связей зависят многие характеристики сети. Например, наличие между узлами нескольких путей повышает надежность сети и делает возможной балансировку загрузки отдельных каналов. Простота присоединения новых узлов, свойственная некоторым топологиям, делает сеть легко расширяемой. Экономические соображения часто приводят к выбору топологий, для которых характерна минимальная суммарная длина линий связи.

Среди множества возможных конфигураций различают полносвязные и неполносвязные:

Рисунок 6 – Типы возможных связей

Полносвязная топология (рисунок 6) соответствует сети, в которой каждый компьютер непосредственно связан со всеми остальными. Несмотря на логическую простоту, это вариант громоздкий и неэффективный. Действительно, каждый компьютер в сети должен иметь большое количество коммуникационных портов, достаточное для связи с каждым из остальных компьютеров. Для каждой пары компьютеров должна быть выделена отдельная физическая линия связи. (В некоторых случаях даже две, если невозможно использование этой линии для двусторонней передачи.)Полносвязные ; топологии в крупных сетях применяются редко, так как для связи N узлов требуется N(N-1)/2 физических дуплексных линий связи, т.е. имеет место квадратичная зависимость. Чаще этот вид топологии используется в многомашинных комплексах или в сетях, объединяющих небольшое количество компьютеров.

Рисунок 7 – Полносвязная топология

Ячеистая топология ( mesh 1 ) получается из полносвязной путем удаления некоторых возможных связей. Ячеистая топология допускает соединение большого количества компьютеров и характерна для крупных сетей (рисунок 7).

Рисунок 8 – Ячеестая топология

В сетях с кольцевой конфигурацией (рисунок 8) данные передаются по кольцу от одного компьютера к другому. Главное достоинство “кольца” в том, что оно по своей природе обладает свойством резервирования связей. Действительно, любая пара узлов соединена здесь двумя путями — по часовой стрелке и против. “Кольцо” представляет собой очень удобную конфигурацию и для организации обратной связи — данные, сделав полный оборот, возвращаются к узлу-источнику. Поэтому отправитель в данном случае может контролировать процесс доставки данных адресату. Часто это свойство “кольца” используется для тестирования связности сети и поиска узла, работающего некорректно. В то же время в сетях с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прерывался канал связи между остальными станциями “кольца”.

Рисунок. 9- Топология «кольцо»

Топология “звезда” (рисунок 9) образуется в том случае, когда каждый компьютер с помощью отдельного кабеля подключается к общему центральному устройству, называемому концентратором 2 . В функции концентратора входит направление передаваемой компьютером информации одному или всем остальным компьютерам сети. В роли концентратора может выступать как компьютер, так и специализированное устройство, такое как многовходовый повторитель, коммутатор или маршрутизатор. К недостаткам топологии типа “звезда” относится более высокая стоимость сетевого оборудования, связанная с необходимостью приобретения специализированного центрального устройства. Кроме того, возможности наращивания количества узлов в сети ограничиваются количеством портов концентратора.

Рисунок 10 – Топология «Звезда»

Одно из улучшений данной топологии, представленной на рисунке 2.0 такого: Подключение первого сегмента сети к серверу, это улучшение нужно нам для того, чтобы сервер имел прямую связь с первым сегментом сети, на данном рисунке первый сегмент соединен со вторым с помощью маршрутизатора, но если маршрутизатор по каким либо причинам откажет в обслуживание, то первый сегмент потеряет связь со вторым и следовательно с сервером.

Иногда имеет смысл строить сеть с использованием нескольких концентраторов, иерархически соединенных между собой связями типа “звезда”(рисунок 10). Получаемую в результате структуру называют также деревом. В настоящее время дерево является самым распространенным типом топологии связей, как в локальных, так и в глобальных сетях.

Рисунок 11 – Топология “иерархическая звезда” или “дерево”

Особым частным случаем конфигурации звезда является конфигурация “общая шина” (рисунок 12). Здесь в роли центрального элемента выступает пассивный кабель, к которому по схеме “монтажного ИЛИ” подключается несколько компьютеров (такую же топологию имеют многие сети, использующие беспроводную связь — роль общей шины здесь играет общая радиосреда). Передаваемая информация распространяется по кабелю и доступна одновременно всем присоединенным к нему компьютерам.

Рисунок 12 -Топология “общая шина”

Основными преимуществами такой схемы являются низкая стоимость и простота наращивания, т.е. присоединения новых узлов к сети.

Самым серьезным недостатком “общей шины” является ее недостаточная надежность: любой дефект кабеля или какого-нибудь из многочисленных разъемов полностью парализует всю сеть. Другой недостаток “общей шины” — невысокая производительность, так как при таком способе подключения в каждый момент времени только один компьютер может передавать данные по сети, поэтому пропускная способность канала связи всегда делится между всеми узлами сети. До недавнего времени “общая шина” являлась одной из самых популярных топологий для локальных сетей.

Источник: mylektsii.ru

Топология физических связей

Объединяя в сеть несколько (больше двух) компьютеров, необходимо решить, каким образом соединить их друг с другом, иначе, выбрать конфигурацию физических связей, или топологию.

Под топологией сети понимается конфигурация графа, вершинам которого соответствуют конечные узлы сети (например, компьютеры) и коммуникационное оборудование (например, маршрутизаторы), а ребрам — физические или информационные связи между вершинами.

Можно соединять каждый компьютер с каждым или же связывать их последовательно, предполагая, что они будут общаться, передавая сообщения друг другу «транзитом». В качестве транзитного узла может выступать как универсальный компьютер, так и специализированное устройство.

Читайте также:  Как определить размеры шин легкового автомобиля

От выбора топологии связей существенно зависят характеристики сети:

· наличие между узлами нескольких путей повышает надежность сети и делает возможным распределение нагрузки между отдельными каналами.

· простота присоединения новых узлов, свойственная некоторым топологиям, делает сеть легко расширяемой.

· экономические соображения часто приводят к выбору топологий, для которых характерна минимальная суммарная длина линий связи.

Среди множества возможных конфигураций различают полносвязные и не полносвязные.

Полносвязная топология соответствует сети, в которой каждый компьютер непосредственно связан со всеми остальными. Этот вариант оказывается громоздким и неэффективным. В таком случае каждый компьютер в сети должен иметь большое количество коммуникационных портов. Полносвязные топологии в крупных сетях применяются редко. Чаще этот вид топологии используется в многомашинных комплексах или в сетях, объединяющих небольшое количество компьютеров.

Рис. 2.10. Типовые топологии сетей

Все другие варианты основаны на неполносвязных топологиях, когда для обмена данными между двумя компьютерами может потребоваться транзитная передача данных через другие узлы сети.

· Кольцевая топология. Данные передаются по кольцу от одного компьютера к другому. Главным достоинством кольца является то, что оно по своей природе обеспечивает резервирование связей. Данные в кольце, сделав полный оборот, возвращаются к узлу-источнику. Поэтому источник может контролировать процесс доставки данных адресату. Это свойство используется для тестирования связности сети и поиска узла, работающего некорректно. В то же время в сетях с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какого-либо компьютера не прерывался канал связи между остальными узлами кольца.

· Звездообразная топология образуется в случае, когда каждый компьютер подключается непосредственно к общему центральному устройству, называемому концентратором. В функции концентратора входит направление передаваемой компьютером информации одному или всем остальным компьютерам сети. В качестве концентратора может выступать как универсальный компьютер, так и специализированное устройство. Недостатки звездообразной топологии: более высокая стоимость сетевого оборудования из-за необходимости приобретения специализированного центрального устройства; возможности по наращиванию количества узлов в сети ограничиваются количеством портов концентратора.

· Иногда имеет смысл строить сеть с использованием нескольких концентраторов, иерархически соединенных между собой звездообразными связями. Получаемую в результате структуру называют иерархической звездой, или деревом. В настоящее время дерево является самой распространенной топологией связи, как в локальных, так и глобальных сетях.

· Особым частным случаем звезды является общая шина. Здесь в качестве центрального элемента выступает пассивный кабель (такую же топологию имеют многие сети, использующие беспроводную связь — роль общей шины здесь играет общая радиосреда). Передаваемая информация распространяется по кабелю и доступна одновременно всем компьютерам, присоединенным к этому кабелю. Достоинства: дешевизна и простота присоединения новых узлов к сети, а недостатками — низкая надежность (любой дефект кабеля полностью парализует всю сеть) и невысокая производительность (в каждый момент времени только один компьютер может передавать данные по сети, поэтому пропускная способность делится здесь между всеми узлами сети).

Рис. 2.11. Смешанная топология

Небольшие сети имеют типовую топологию – звезда, кольцо или общая шина, для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно связанные фрагменты (подсети), имеющие типовую топологию, поэтому их называют сетями со смешанной топологией.

Источник: mydocx.ru

Проблемы связи нескольких компьютеров

Топология физических связей

Как только компьютеров становится больше двух, возникает проблема выбора конфигурации физических связей или топологии . Под топологией сети понимается конфигурация графа, вершинам которого соответствуют конечные узлы сети (например, компьютеры) и коммуникационное оборудование (например, маршрутизаторы), а ребрам — электрические и информационные связи между ними.

Число возможных конфигураций резко возрастает при увеличении числа связываемых устройств. Так, если три компьютера мы можем связать двумя способами, то для четырех компьютеров (рис. 4.1) можно предложить уже шесть топологически различных конфигураций (при условии неразличимости компьютеров).

Мы можем соединять каждый компьютер с каждым или же связывать их последовательно, предполагая, что они будут общаться, передавая друг другу сообщения “транзитом”. При этом транзитные узлы должны быть оснащены специальными средствами, позволяющими выполнять эту специфическую посредническую операцию. В роли транзитного узла может выступать как универсальный компьютер , так и специализированное устройство.

От выбора топологии связей зависят многие характеристики сети. Например, наличие между узлами нескольких путей повышает надежность сети и делает возможной балансировку загрузки отдельных каналов. Простота присоединения новых узлов, свойственная некоторым топологиям , делает сеть легко расширяемой. Экономические соображения часто приводят к выбору топологий , для которых характерна минимальная суммарная длина линий связи .

Среди множества возможных конфигураций различают полносвязные и неполносвязные:

Полносвязная топология (рис. 4.2) соответствует сети, в которой каждый компьютер непосредственно связан со всеми остальными. Несмотря на логическую простоту, это вариант громоздкий и неэффективный. Действительно, каждый компьютер в сети должен иметь большое количество коммуникационных портов, достаточное для связи с каждым из остальных компьютеров. Для каждой пары компьютеров должна быть выделена отдельная физическая линия связи . (В некоторых случаях даже две, если невозможно использование этой линии для двусторонней передачи.) Полносвязные ; топологии в крупных сетях применяются редко, так как для связи N узлов требуется N(N-1)/2 физических дуплексных линий связи, т.е. имеет место квадратичная зависимость. Чаще этот вид топологии используется в многомашинных комплексах или в сетях, объединяющих небольшое количество компьютеров.

Все другие варианты основаны на неполносвязных топологиях , когда для обмена данными между двумя компьютерами может потребоваться промежуточная передача данных через другие узлы сети.

Ячеистая топология ( mesh 1 Иногда термин “mesh” используют и для обозначения полносвязной или близкой к полносвязной топологий. ) получается из полносвязной путем удаления некоторых возможных связей. Ячеистая топология допускает соединение большого количества компьютеров и характерна для крупных сетей (рис 4.3).

В сетях с кольцевой конфигурацией (рис. 4.4) данные передаются по кольцу от одного компьютера к другому. Главное достоинство “кольца” в том, что оно по своей природе обладает свойством резервирования связей. Действительно, любая пара узлов соединена здесь двумя путями — по часовой стрелке и против. “Кольцо” представляет собой очень удобную конфигурацию и для организации обратной связи — данные, сделав полный оборот, возвращаются к узлу-источнику. Поэтому отправитель в данном случае может контролировать процесс доставки данных адресату. Часто это свойство “кольца” используется для тестирования связности сети и поиска узла, работающего некорректно. В то же время в сетях с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прерывался канал связи между остальными станциями “кольца” .

Читайте также:  Как выбрать новые шины

Топология “звезда” (рис.4.5) образуется в том случае, когда каждый компьютер с помощью отдельного кабеля подключается к общему центральному устройству, называемому концентратором 2 В данном случае термин “концентратор” используется в широком смысле, им обозначается любое многовходовое устройство, способное служить центральным элементом, например коммутатор или маршрутизатор. . В функции концентратора входит направление передаваемой компьютером информации одному или всем остальным компьютерам сети. В роли концентратора может выступать как компьютер , так и специализированное устройство, такое как многовходовый повторитель , коммутатор или маршрутизатор . К недостаткам топологии типа “звезда” относится более высокая стоимость сетевого оборудования, связанная с необходимостью приобретения специализированного центрального устройства. Кроме того, возможности наращивания количества узлов в сети ограничиваются количеством портов концентратора .

Иногда имеет смысл строить сеть с использованием нескольких концентраторов , иерархически соединенных между собой связями типа “звезда” (рис. 4.6). Получаемую в результате структуру называют также деревом. В настоящее время дерево является самым распространенным типом топологии связей, как в локальных, так и в глобальных сетях.

Особым частным случаем конфигурации звезда является конфигурация “общая шина” (рис. 4.7). Здесь в роли центрального элемента выступает пассивный кабель, к которому по схеме “монтажного ИЛИ” подключается несколько компьютеров (такую же топологию имеют многие сети, использующие беспроводную связь — роль общей шины здесь играет общая радиосреда). Передаваемая информация распространяется по кабелю и доступна одновременно всем присоединенным к нему компьютерам.

Основными преимуществами такой схемы являются низкая стоимость и простота наращивания, т.е. присоединения новых узлов к сети.

Самым серьезным недостатком “общей шины” является ее недостаточная надежность : любой дефект кабеля или какого-нибудь из многочисленных разъемов полностью парализует всю сеть . Другой недостаток “общей шины” — невысокая производительность , так как при таком способе подключения в каждый момент времени только один компьютер может передавать данные по сети, поэтому пропускная способность канала связи всегда делится между всеми узлами сети. До недавнего времени “общая шина” являлась одной из самых популярных топологий для локальных сетей.

В то время как небольшие сети, как правило, имеют типовую топологию — “звезда” , “кольцо” или “общая шина” , для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно связанные фрагменты (подсети), имеющие типовую топологию , поэтому их называют сетями со смешанной топологией (рис. 4.8).

Источник: www.intuit.ru

Топологии сетей

Термин топология сети означает способ соединения компьютеров в сеть. Вы также можете услышать другие названия – структура сети или конфигурация сети (это одно и то же). Кроме того, понятие топологии включает множество правил, которые определяют места размещения компьютеров, способы прокладки кабеля, способы размещения связующего оборудования и многое другое. На сегодняшний день сформировались и устоялись несколько основных топологий. Из них можно отметить “шину”, “кольцо” и “звезду”.

Топология “шина”

Топология шина (или, как ее еще часто называют общая шина или магистраль) предполагает использование одного кабеля, к которому подсоединены все рабочие станции.Общий кабель используется всеми станциями по очереди. Все сообщения, посылаемые отдельными рабочими станциями, принимаются и прослушиваются всеми остальными компьютерами, подключенными к сети. Из этого потока каждая рабочая станция отбирает адресованные только ей сообщения.

Достоинства топологии “шина”:

  • простота настройки;
  • относительная простота монтажа и дешевизна, если все рабочие станции расположены рядом;
  • выход из строя одной или нескольких рабочих станций никак не отражается на работе всей сети.

Недостатки топологии “шина”:

  • неполадки шины в любом месте (обрыв кабеля, выход из строя сетевого коннектора) приводят к неработоспособности сети;
  • сложность поиска неисправностей;
  • низкая производительность – в каждый момент времени только один компьютер может передавать данные в сеть, с увеличением числа рабочих станций производительность сети падает;
  • плохая масштабируемость – для добавления новых рабочих станций необходимо заменять участки существующей шины.

Именно по топологии “шина” строились локальные сети на коаксиальном кабеле . В этом случае в качестве шины выступали отрезки коаксиального кабеля, соединенные Т-коннекторами. Шина прокладывалась через все помещения и подходила к каждому компьютеру. Боковой вывод Т-коннектора вставлялся в разъем на сетевой карте. Вот как это выглядело:Сейчас такие сети безнадежно устарели и повсюду заменены “звездой” на витой паре, однако оборудование под коаксиальный кабель еще можно увидеть на некоторых предприятиях.

Топология “кольцо”

Кольцо – это топология локальной сети, в которой рабочие станции подключены последовательно друг к другу, образуя замкнутое кольцо. Данные передаются от одной рабочей станции к другой в одном направлении (по кругу). Каждый ПК работает как повторитель, ретранслируя сообщения к следующему ПК, т.е. данные передаются от одного компьютера к другому как бы по эстафете.Если компьютер получает данные, предназначенные для другого компьютера – он передает их дальше по кольцу, в ином случае они дальше не передаются.

Достоинства кольцевой топологии:

  • простота установки;
  • практически полное отсутствие дополнительного оборудования;
  • возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети.

Однако “кольцо” имеет и существенные недостатки:

  • каждая рабочая станция должна активно участвовать в пересылке информации; в случае выхода из строя хотя бы одной из них или обрыва кабеля – работа всей сети останавливается;
  • подключение новой рабочей станции требует краткосрочного выключения сети, поскольку во время установки нового ПК кольцо должно быть разомкнуто;
  • сложность конфигурирования и настройки;
  • сложность поиска неисправностей.

Кольцевая топология сети используется довольно редко. Основное применение она нашла в оптоволоконных сетях стандарта Token Ring.

Топология “звезда”

Звезда – это топология локальной сети, где каждая рабочая станция присоединена к центральному устройству (коммутатору или маршрутизатору). Центральное устройство управляет движением пакетов в сети. Каждый компьютер через сетевую карту подключается к коммутатору отдельным кабелем.При необходимости можно объединить вместе несколько сетей с топологией “звезда” – в результате вы получите конфигурацию сети с древовидной топологией. Древовидная топология распространена в крупных компаниях. Мы не будем ее подробно рассматривать в данной статье.

Читайте также:  Какие шины ставят на заводе на приору

Топология “звезда” на сегодняшний день стала основной при построении локальных сетей. Это произошло благодаря ее многочисленным достоинствам:

  • выход из строя одной рабочей станции или повреждение ее кабеля не отражается на работе всей сети в целом;
  • отличная масштабируемость: для подключения новой рабочей станции достаточно проложить от коммутатора отдельный кабель;
  • легкий поиск и устранение неисправностей и обрывов в сети;
  • высокая производительность;
  • простота настройки и администрирования;
  • в сеть легко встраивается дополнительное оборудование.

Однако, как и любая топология, “звезда” не лишена недостатков:

  • выход из строя центрального коммутатора обернется неработоспособностью всей сети;
  • дополнительные затраты на сетевое оборудование – устройство, к которому будут подключены все компьютеры сети (коммутатор);
  • число рабочих станций ограничено количеством портов в центральном коммутаторе.

Звезда – самая распространенная топология для проводных и беспроводных сетей. Примером звездообразной топологии является сеть с кабелем типа витая пара, и коммутатором в качестве центрального устройства. Именно такие сети встречаются в большинстве организаций.

Источник: blogsisadmina.ru

Компьютерные сети

You are here

Топология физических связей

Объединяя в сеть несколько (больше двух) компьютеров, необходимо решить, каким образом соединить их друг с другом, другими словами, выбрать конфигурацию физических связей, или топологию.

Число возможных вариантов конфигурации резко возрастает при увеличении числа связываемых устройств. Так, если три компьютера мы можем связать двумя способами (рис.1 а), то для четырех можно предложить уже шесть топологически разных конфигураций (при условии неразличимости компьютеров), что и иллюстрирует рис.1 б.

Мы можем соединять каждый компьютер с каждым или же связывать их последовательно, предполагая, что они будут общаться, передавая сообщения друг другу «транзитом». Транзитные узлы должны быть оснащены специальными средствами, позволяющими им выполнять эту специфическую посредническую операцию. В качестве транзитного узла может выступать как универсальный компьютер, так и специализированное устройство.

От выбора топологии связей существенно зависят характеристики сети. Например, наличие между узлами нескольких путей повышает надежность сети и делает возможным распределение загрузки между отдельными каналами. Простота присоединения новых узлов, свойственная некоторым топологиям, делает сеть легко расширяемой. Экономические соображения часто приводят к выбору топологий, для которых характерна минимальная суммарная длина линий связи.

Среди множества возможных конфигураций различают полносвязные и неполно-связные.

Полносвязная топология (рис. 2 а) соответствует сети, в которой каждый компьютер непосредственно связан со всеми остальными. Несмотря на логическую простоту, этот вариант оказывается громоздким и неэффективным. Действительно, в таком случае каждый компьютер в сети должен иметь большое количество коммуникационных портов, достаточное для связи с.каждым из остальных компьютеров сети. Для каждой пары компьютеров должна быть выделена отдельная физическая линия связи. (В некоторых случаях даже две, если невозможно использование этой линии для двусторонней передачи.) Полно-связные топологии в крупных сетях применяются редко, так как для связи N узлов требуется N(N- 1)/2 физических дуплексных линий связей, то есть имеет место квадратичная зависимость от числа узлов. Чаще этот вид топологии используется в многомашинных комплексах или в сетях, объединяющих небольшое количество компьютеров.

Все другие варианты основаны на неполносвязных топологиях, когда для обмена данными между двумя компьютерами может потребоваться транзитная передача данных через другие узлы сети.

Ячеистая топология получается из полносвязной путем удаления некоторых связей (рис. 2 б). Ячеистая топология допускает соединение большого количества компьютеров и характерна, как правило, для крупных сетей.

В сетях с кольцевой топологией (рис. 2 в) данные передаются по кольцу от одного компьютера к другому. Главным достоинством кольца является то, что оно по своей природе обеспечивает резервирование связей. Действительно, любая пара узлов соединена здесь двумя путями — по часовой стрелке и против нее. Кроме того, кольцо представляет собой очень удобную конфигурацию для организации обратной связи — данные, сделав полный оборот, возвращаются к узлу-источнику. Поэтому источник может контролировать процесс доставки данных адресату. Часто это свойство кольца используется для тестирования связности сети и поиска узла, работающего некорректно. В то же время в сетях с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какого-либо компьютера не прерывался канал связи между остальными узлами кольца.

Звездообразная топология (рис. 2 г) образуется в случае, когда каждый компьютер подключается непосредственно к общему центральному устройству, называемому концентратором. В функции концентратора входит направление передаваемой компьютероминформации одному или всем остальным компьютерам сети. В качестве концентратора может выступать как универсальный компьютер, так и специализированное устройство. К недостаткам звездообразной топологии относится более высокая стоимость сетевого оборудования из-за необходимости приобретения специализированного центрального устройства. Кроме того, возможности по наращиванию количества узлов в сети ограничиваются количеством портов концентратора.

Иногда имеет смысл строить сеть с использованием нескольких концентраторов, иерархически соединенных между собой звездообразными связями (рис. 2 д). Получаемую в результате структуру называют иерархической звездой, или деревом. В настоящее время дерево является самой распространенной топологией связей как в локальных, так и глобальных сетях.
Особым частным случаем звезды является общая шина (рис. 2 е). Здесь в качестве центрального элемента выступает пассивный кабель, к которому по схеме «монтажного ИЛИ» подключается несколько компьютеров (такую же топологию имеют многие сети, использующие беспроводную связь — роль общей шины здесь играет общая радиосреда).

Передаваемая информация распространяется по кабелю и доступна одновременно всем компьютерам, присоединенным к этому кабелю. Основными преимуществами такой схемы являются ее дешевизна и простота присоединения новых узлов к сети, а недостатками — низкая надежность (любой дефект кабеля полностью парализует всю сеть) и невысокая производительность (в каждый момент времени только один компьютер может передавать данные по сети, поэтому пропускная способность делится здесь между всеми узлами сети).

В то время как небольшие сети, как правило, имеют типовую топологию — звезда, кольцо или общая шина, для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно связанные фрагменты (подсети), имеющие типовую топологию, поэтому их называют сетями со смешанной топологией (рис. 3).

Источник: iptcp.net