Lvld шина какого приоритета

Электропитающая установка ЭПУ

Описание

Электропитающая установка (ЭПУ 220/48) предназначена для бесперебойного электроснабжение постоянным током напряжением 48 В, а также переменным током напряжением 220 В. Являестя источником бесперебойного питания т.м. модели SPE.

Отличительные особенности

Каждое ЭПУ разрабатывается и изготавливается строго ориентируясь на требования заказчика, это позволяет оптимизировать ЭПУ по таким параметрам как:

– возможность модернизации в процессе эксплуатации;

Такие особенности ЭПУ позволяют легко интегрировать ее в систему энергоснабжения заказчика, а его эксплуатация существенно повышает надежность системы энергоснабжения, качество электроэнергии и уменьшает трудоемкость обслуживания системы электропитания.

Функции ЭПУ

— онлайн мониторинг и диагностика качество электроэнергии, состояние аппаратов защиты;

— формирование сигналов аварии при токах короткого замыкания, перенапряжения, выходе из строя узлов системы энергоснабжения;

— селективное отключение нагрузки;

— резервирование источник питания переменного и/или постоянного тока, в том числе двойное резервирование.

Сертификаты

ЭПУ соответствует требованиям ТР ТС 004/2011 и ТР ТС 020/201

Область применения ЭПУ

Потребители первой, особой категории, средства связи и телекоммуникаций, социально-значимые объекты.

Основные свойства и характеристика ЭПУ

Род тока вводной цепи

Номинальное напряжение на вводе AC , В

Частота питающей сети, Гц

Степень защиты оболочки по ГОСТ 14254-96

Номинальные токи автоматов отходящих линий, А

в соответствии с таблицей экспликации

Предельная отключающая способность при коротком замыкании, кА

Вид системы заземления

Вид разделения по ГОСТ 51321.1-2000

Тип электрических соединений функциональных блоков

Условия эксплуатации по ГОСТ 15150-69

Номинальное переменное напряжение на выходе, В

Номинальное постоянное напряжение на выходе, В

Время работы от АКБ при 100% нагрузке, мин

Габаритные размеры ВхШхГ, мм не более

Тип конструктивного исполнения

Подвод сети электроэнергии

Вывод отходящих линий

429920, Чувашская Республика, Цивильский район,

пос. Молодежный, ул. Заводская, д.19, корп.1

Тел.: 8-800-333-23-58 | Эл. почта: [email protected]

Источник: zit21.ru

SavePearlHarbor

Ещё одна копия хабора

Устройство и настройка ЭПУ на базовой станции сотовой связи

Все потребители комуникации в базовой станции (БС) — РРЛ (радиорелейная часть или релейка), сама базовая станция, SDH — это оборудование, которое работает от -48 вольт и на постоянном токе.

К БС подходит 380В, задача электопитающей установки (ЭПУ) как раз преобразовать 380В (220В) переменного тока в -48В постоянного. Получается «+» на корпусе ЭПУ.
В осносном в работе используются ЭПУ от компании Eltek, есть несколько от других произвоителей, но их мало, они старые, и сложны в настройках. У Элтека есть модели FlatPack и пришедшая на замену ей, более гибкий в настройке FlatPack 2, о котором я хочу остановиться более подробно.

ЭПУ это металлический шкаф высотой 2 метра со стеллажами для аккумуляторов, модулем управления (SmartPack), выпрямителями, как раз что и преобразует 220В переменного тока в -48В постоянного, их мощность, как правило, 2 kW по 48В, они могут работать от 185 – 275В, правда при 260В кулера на них начинают жутко жужжать и выть от высокго напряжения, да и КПД у них 92%, производитель сообщает, что время наработки на отказ составляет 350,000 часов и, действительно, они крайне редко ломаются, единственный его минус — вес, один выпрямитель достаточно тяжелый — 2 килограмма и иногда приходится нести с собой зимой в гору по лесу сумку с инстументами — 10 кг и 3 выпрямителя — 6 кг. и еще килограмм 5 всякой мелочи, когда аварийный выезд и причина отключния неизвестна.

первое — это общий вид ЭПУ,
вторая — вид на выпрямители и SmartPack,
третья — вид на шины нагрузки, левая — приоритет, правая — нерприоритет.

Но отвлеклись от устройства ЭПУ, следющие элементы это два контактора и два ряда автоматов, поясню сразу для чего они необходимы: первый контактор отключает неприритетную нагрузку (LVLD, нагрузочный), второй, сответственно, приоритетную (LVBD, батарейный), иными словами — этот контактор отключает батареи.

Система устроена так, что если станция узловая то есть к ней приходит поток, допустим с контроллера, и от этой станции поток еще отходит, разделяется на несколько станций, получается от нашей БС зависит работоспособность пяти других, такая станция считается узловой, вот тут и помогаеют нам контакторы.

РРЛ, SDH и другой транспорт всегда подключается к шине, которой управляет контактор LVBD — приритетная шина, а БС к LVLD неприоритет. Контакторы срабатываю придостижении определенного параметра — это напряжение.

Например, пропадает сетевое питание на узловой станции (авария, повредение кабеля, сгорел щит), станция начинает работать от АКБ, их обычно 3-4группы по 48В, в группе 4 АКБ по 12В, есмкость зависит от установленных моделей, в среднем это около 500 Ач.

Нагрузка есть, батареи садятся и напряжение падает, как только оно поустилось, скажем, до 46В то нагрузочный контактор, размыкается и БС отключется (авария OML Fault), но в работе остается только приоритетная нагрузка: узловая станция не работает, но транспорт остается в работе и наши пять станции успешно вещают, далее напряжение продолжает падать и достигает критичных 43В ниже уже начинаются необратимые процессы в аккумуляторе, батарейный контактор отключает приоритетную нагрузку — транспорт падет и сигнал пропадает на пяти других БС, которые подключены к нашей. Хочу отметить что с момента пропажи питания и до отключения батарей проходит разное время в зависимости от нагрузки, того, сколько потребляет оборудование и состояния АКБ. Знаю, что были случаи и БС падала через 20 секунд или узел стоял два дня и посадил аккумуляторы всего на треть, тут все очень индивидуально. Такая система приоритезации нагрузки называется эшелонированием.

Читайте также:  Какие шины лучше для зимы на приору

Всей системой управляет модуль SmartPack — мозг ЭПУ, в нем хранятся все параметры. У СпартПака есть Ethetnet-выход с вебмордой, которая смотрит в локульную сеть, таким образом мы можем выполнять большую часть настроек, контролировать состояние, смотреть авариные сигналы на стойке, кстати, информация про аварийные сигналы на БС заслуживает отдельной темы.

При обслуживании ЭПУ инженер подключеются кабелем к модулю управления изменяет насройки, коих множество.

Главное, этот как раз эшелонирование, настройка аварииной сигнализации, для АКБ это регулировка тока заряда, температурная компенсация, симметрия — параметр напряжения с помощью которого можно увидеть на какой группе напряжение упало и принять меры, для выпрямителей — напряжение в спящем режиме, рабочее напряжение, ограничение тока выпрямителя. Отмечу, что на выпрямителях есть так же светодиодный индикатор: зелный цвет — все ок, желтый — внимание и красный когда выпрямитель вышел из строя, например, перегорел. Так же производится обтяжка всех автоматов, клемм АКБ, удалятеся пыль и грязь, все недочеты записываются и устраняются при следующем ТО.

Буду рад написать новые статьи о энергетике в сотовой связи!

Источник: savepearlharbor.com

Устройство и настройка ЭПУ на базовой станции сотовой связи

Пост навеян рассказом о Отчёт о техническом обслуживании базовой станции стандартов GSM и UMTS. Так уж сложилось, что мы с автором статьи почти коллеги, но в разных регионах и границы эксплуатационной отвественности иные.

Все потребители комуникации в базовой станции (БС) — РРЛ (радиорелейная часть или релейка), сама базовая станция, SDH — это оборудование, которое работает от -48 вольт и на постоянном токе.

К БС подходит 380В, задача электопитающей установки (ЭПУ) как раз преобразовать 380В (220В) переменного тока в -48В постоянного. Получается «+» на корпусе ЭПУ.
В осносном в работе используются ЭПУ от компании Eltek, есть несколько от других произвоителей, но их мало, они старые, и сложны в настройках. У Элтека есть модели FlatPack и пришедшая на замену ей, более гибкий в настройке FlatPack 2, о котором я хочу остановиться более подробно.

ЭПУ это металлический шкаф высотой 2 метра со стеллажами для аккумуляторов, модулем управления (SmartPack), выпрямителями, как раз что и преобразует 220В переменного тока в -48В постоянного, их мощность, как правило, 2 kW по 48В, они могут работать от 185 – 275В, правда при 260В кулера на них начинают жутко жужжать и выть от высокго напряжения, да и КПД у них 92%, производитель сообщает, что время наработки на отказ составляет 350,000 часов и, действительно, они крайне редко ломаются, единственный его минус — вес, один выпрямитель достаточно тяжелый — 2 килограмма и иногда приходится нести с собой зимой в гору по лесу сумку с инстументами — 10 кг и 3 выпрямителя — 6 кг. и еще килограмм 5 всякой мелочи, когда аварийный выезд и причина отключния неизвестна.

первое — это общий вид ЭПУ,
вторая — вид на выпрямители и SmartPack,
третья — вид на шины нагрузки, левая — приоритет, правая — нерприоритет.

Но отвлеклись от устройства ЭПУ, следющие элементы это два контактора и два ряда автоматов, поясню сразу для чего они необходимы: первый контактор отключает неприритетную нагрузку (LVLD, нагрузочный), второй, сответственно, приоритетную (LVBD, батарейный), иными словами — этот контактор отключает батареи.

Система устроена так, что если станция узловая то есть к ней приходит поток, допустим с контроллера, и от этой станции поток еще отходит, разделяется на несколько станций, получается от нашей БС зависит работоспособность пяти других, такая станция считается узловой, вот тут и помогаеют нам контакторы.

РРЛ, SDH и другой транспорт всегда подключается к шине, которой управляет контактор LVBD — приритетная шина, а БС к LVLD неприоритет. Контакторы срабатываю придостижении определенного параметра — это напряжение.

Например, пропадает сетевое питание на узловой станции (авария, повреждение кабеля, сгорел щит), станция начинает работать от АКБ, их обычно 3-4группы по 48В, в группе 4 АКБ по 12В, есмкость зависит от установленных моделей, в среднем это около 500 Ач.

Нагрузка есть, батареи садятся и напряжение падает, как только оно поустилось, скажем, до 46В то нагрузочный контактор, размыкается и БС отключется (авария OML Fault), но в работе остается только приоритетная нагрузка: узловая станция не работает, но транспорт остается в работе и наши пять станции успешно вещают, далее напряжение продолжает падать и достигает критичных 43В ниже уже начинаются необратимые процессы в аккумуляторе, батарейный контактор отключает приоритетную нагрузку — транспорт падет и сигнал пропадает на пяти других БС, которые подключены к нашей. Хочу отметить что с момента пропажи питания и до отключения батарей проходит разное время в зависимости от нагрузки, того, сколько потребляет оборудование и состояния АКБ. Знаю, что были случаи и БС падала через 20 секунд или узел стоял два дня и посадил аккумуляторы всего на треть, тут все очень индивидуально. Такая система приоритезации нагрузки называется эшелонированием.

Всей системой управляет модуль SmartPack — мозг ЭПУ, в нем хранятся все параметры. У СпартПака есть Ethetnet-выход с вебмордой, которая смотрит в локальную сеть, таким образом мы можем выполнять большую часть настроек, контролировать состояние, смотреть авариные сигналы на стойке, кстати, информация про аварийные сигналы на БС заслуживает отдельной темы.

Читайте также:  Какой размер шин лучше на ваз 2110

При обслуживании ЭПУ инженер подключеются кабелем к модулю управления изменяет насройки, коих множество.

Главное, этот как раз эшелонирование, настройка аварииной сигнализации, для АКБ это регулировка тока заряда, температурная компенсация, симметрия — параметр напряжения с помощью которого можно увидеть на какой группе напряжение упало и принять меры, для выпрямителей — напряжение в спящем режиме, рабочее напряжение, ограничение тока выпрямителя. Отмечу, что на выпрямителях есть так же светодиодный индикатор: зелный цвет — все ок, желтый — внимание и красный когда выпрямитель вышел из строя, например, перегорел. Так же производится обтяжка всех автоматов, клемм АКБ, удалятеся пыль и грязь, все недочеты записываются и устраняются при следующем ТО.

Буду рад написать новые статьи о энергетике в сотовой связи!

UPD:
Как выглядит Веб-интерфейс:

Как выглядит собраная ЭПУ (станция узловая по этому подключается дополнительный статив с АКБ)

Источник: habr.com

Lvld шина какого приоритета

Всё течёт, всё меняется. В сфере компьютерных технологий эта фраза никогда не потеряет актуальности, равно как и девиз «Быстрее! Выше! Сильнее!». И действительно, последние несколько лет можно назвать «временами перемен» компьютерной индустрии. В полной мере это коснулось и такой специфичной области, как шины передачи данных.

Среди наиболее динамично развивающихся областей компьютерной техники стоит отметить сферу технологий передачи данных: в отличие от сферы вычислений, где наблюдается продолжительное и устойчивое развитие параллельных архитектур, в «шинной» 1 сфере, как среди внутренних, так и среди периферийных шин, наблюдается тенденция перехода от синхронных параллельных шин к высокочастотным последовательным. (Заметьте, «последовательные» – не обязательно значит «однобитные», здесь возможны и 2, и 8, и 32 бит ширины при сохранении присущей последовательным шинам пакетной передачи данных, то есть в пакете импульсов данные, адрес, CRC и другая служебная информация разделены на логическом уровне 2 ).

Все эти нововведения и смена приоритетов преследуют в конечном итоге одну цель – повышение суммарного быстродействия системы, ибо не все существующие архитектурные решения способны эффективно масштабироваться. Несоответствие пропускной способности шин потребностям обслуживаемых ими устройств приводит к эффекту «бутылочного горлышка» и препятствует росту быстродействия даже при дальнейшем увеличении производительности вычислительных компонентов – процессора, оперативной памяти, видеосистемы и так далее.

Процессорная шина

Любой процессор архитектуры x86CPU обязательно оснащён процессорной шиной. Эта шина служит каналом связи между процессором и всеми остальными устройствами в компьютере: памятью, видеокартой, жёстким диском и так далее. Так, классическая схема организации внешнего интерфейса процессора (используемая, к примеру, компанией Intel в своих процессорах архитектуры х86) предполагает, что параллельная мультиплексированная процессорная шина, которую принято называть FSB (Front Side Bus), соединяет процессор (иногда два процессора или даже больше) и контроллер, обеспечивающий доступ к оперативной памяти и внешним устройствам. Этот контроллер обычно называют северным мостом , он входит в состав набора системной логики ( чипсета ).

Используемая Intel в настоящее время эволюция FSB – QPB , или Quad-Pumped Bus, способна передавать четыре блока данных за такт и два адреса за такт! То есть за каждый такт синхронизации шины по ней может быть передана команда либо четыре порции данных (напомним, что шина FSB–QPB имеет ширину 64 бит, то есть за такт может быть передано до 4х64=256 бит, или 32 байт данных). Итого, скажем, для частоты FSB, равной 200 МГц, эффективная частота передачи адреса для выборки данных будет эквивалентна 400 МГц (2х200 МГц), а самих данных – 800 МГц (4х200 МГц) 3 .

В архитектуре же AMD64 (и её микроархитектуре K8), используемой компанией AMD в своих процессорах линеек Athlon 64/Sempron/Opteron, применён революционно новый подход к организации интерфейса центрального процессора – здесь имеет место наличие в самом процессоре нескольких отдельных шин. Одна (или две – в случае двухканального контроллера памяти) шина служит для непосредственной связи процессора с памятью, а вместо процессорной шины FSB и для сообщения с другими процессорами используются высокоскоростные шины HyperTransport. Преимуществом данной схемы является уменьшение задержек (латентности) при обращении процессора к оперативной памяти, ведь из пути следования данных по маршруту «процессор – ОЗУ» (и обратно) исключаются такие весьма загруженные элементы, как интерфейсная шина и контроллер северного моста.

Различия реализации классической архитектуры и АМD-K8

Ещё одним довольно заметным отличием архитектуры К8 является отказ от асинхронности, то есть обеспечение синхронной работы процессорного ядра, ОЗУ и шины HyperTransport, частоты которых привязаны к «шине» тактового генератора (НТТ), которая в этом случае является опорной. Таким образом, для процессора архитектуры К8 частоты ядра и шины HyperTransport задаются множителями по отношению к НТТ, а частота шины памяти выставляется делителем от частоты ядра процессора 4

В классической же схеме с шиной FSB и контроллером памяти, вынесенным в северный мост, возможна (и используется) асинхронность шин FSB и ОЗУ, а опорной частотой для процессора выступает частота тактирования 5 (а не передачи данных) шины FSB, частота же тактирования шины памяти может задаваться отдельно. Из наиболее свежих чипсетов возможностью раздельного задания частот FSB и памяти обладает NVIDIA nForce 680i SLI, что делает его отличным выбором для тонкой настройки системы (разгона).

Читайте также:  Как сделать шины ободрыши

HyperTransport

Эмблема HyperTransport Technology Consortium

HyperTransport – это прежде всего технология, управлением спецификациями и продвижением которой занимается HyperTransport Technology Consortium, куда входят такие компании, как Advanced Micro Devices (AMD), Alliance Semiconductor, Apple Computer, Broadcom Corporation, Cisco Systems, NVIDIA, PMC-Sierra, Sun Microsystems, Transmeta и ещё более 140 малых и больших компаний.

Основные особенности и возможности, предоставляемые технологией HyperTransport

Технология HyperTransport (ранее известная как Lightning Data Transport) – это последовательная (пакетная) связь, построенная по схеме peer-to-peer (точка-точка), обеспечивающая высокую скорость при низкой латентности (low-latency responses). HyperTransport имеет оригинальную топологию на основе линков, тоннелей, цепей (цепь – последовательное объединение нескольких туннелей) и мостов (мост выполняет маршрутизацию пакетов между отдельными цепями), что позволяет этой архитектуре легко масштабироваться. Иными словами, HyperTransport призвана упростить внутрисистемные сообщения (передачи) посредством замены существующего физического уровня передачи существующих шин и мостов, а также снизить количество узких мест и задержек. При всех этих достоинствах HyperTransport характеризуется также малым числом выводов (low pin counts) и низкой стоимостью внедрения. HyperTransport поддерживает автоматическое определение ширины шины 6 , допуская ширину от 2 до 32 бит в каждом направлении, использует Double Data Rate, или DDR (данные посылаются как по переднему, так и по заднему фронтам сигнала синхронизации), кроме того, она позволяет передавать асимметричные потоки данных к периферийным устройствам и от них.

Топология шины HyperTransport

На данный момент консорциумом HyperTransport разработана уже третья версия спецификации, согласно которой шина HyperTransport может работать на частотах до 2,6 ГГц (сравните с шиной PCI и её 33 или 66 МГц). Это позволяет передавать до 5200 миллионов пакетов в секунду при частоте сигнала синхронизации 2,6 ГГц; частота сигнала синхронизации настраивается автоматически.

Полноразмерная (32-битная) полноскоростная (2,6 ГГц) шина способна обеспечить пропускную способность до 20800 МБ/с (2*(32/8)*2600) в каждую сторону, являясь на сегодняшний день самой быстрой шиной среди себе подобных.

Самые известные решения c использованием HyperTransport:

  • шина, созданная по технологии HyperTransport, является основной шиной, используемой в процессорах восьмого поколения компании AMD – Athlon 64 и Opteron, а также внутри поддерживающих их устройств: концентратора ввода-вывода (I/O hub) AMD-8111, AMD-8131 PCI-X tunnel и AMD-8151 AGP 3.0 graphics tunnel
  • SiPackets предлагает мост между HyperTransport и PCI (HyperTransport-to-PCI bridge) 7
  • соединение между северным и южным мостами в чипсетах NVIDIA nForce (nForce-nForce 6)
  • платформенная архитектура обработки данных NVIDIA (NVIDIA nForce Platform Processing Architecture), включающая встроенный графический процессор NVIDIA (NVIDIA nForce Integrated Graphics Processor (IGP) и процессор передачи данных NVIDIA (NVIDIA nForce Media and Communications Processor (MCP)
  • соединение между мостами в чипсете ATI Radeon® Xpress 200 для процессоров AMD
  • консольный чипсет игровой приставки Xbox фирмы Microsoft (Microsoft Xbox)
  • системный контроллер ServerWorks HT-2000 HyperTransport™ SystemI/O™ Controller
  • компьютеры фирмы Apple с процессором PowerPC G5


Увеличить

Использование шины НyperТransport на примере двухпроцессорной системы на базе AMD Opteron

Источник: citforum.ru

Lvld шина какого приоритета

ЭПУ ЗС Красноярского края

Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.

  1. ЭП
  2. ЭПиУ
  3. ЭПУ

электронные приборы и устройства

образование и наука, техн.

эжектор пароструйный уплотнений

в маркировке, энерг.

Словарь сокращений и аббревиатур . Академик . 2015 .

Смотреть что такое «ЭПУ» в других словарях:

ЭПУ — электрическое проигрывающее устройство электропусковое устройство электропылесос универсальный … Словарь сокращений русского языка

активное ЭПУ — активное ЭПУ: ЭПУ, выдающее сигнал (данные) с помощью собственного источника электропитания. Источник: ГОСТ Р 52259 2004: Устройства пломбировочные электронные. Общие технические требования … Словарь-справочник терминов нормативно-технической документации

бесконтактное ЭПУ — бесконтактное ЭПУ: ЭПУ, получающее или передающее сигналы дистанционно. Источник: ГОСТ Р 52259 2004: Устройства пломбировочные электронные. Общие технические требования … Словарь-справочник терминов нормативно-технической документации

контактное ЭПУ — контактное ЭПУ: ЭПУ, получающее и передающее сигналы при контакте с ним считывающего устройства. Источник: ГОСТ Р 52259 2004: Устройства пломбировочные электронные. Общие технические требования … Словарь-справочник терминов нормативно-технической документации

пассивное ЭПУ — пассивное ЭПУ: ЭПУ, выдающее ответный сигнал (данные) с использованием энергии электромагнитного поля, излучаемого считывающим устройством. Источник: ГОСТ Р 52259 2004: Устройства пломбировочные электронные. Общие технические требования … Словарь-справочник терминов нормативно-технической документации

электронное пломбировочное устройство (ЭПУ) — 3.3 электронное пломбировочное устройство (ЭПУ): ПУ с элементами электронной памяти, логики и передачи информации, автоматически формирующее дополнительные идентификационные признаки (радиочастотные, оптические), сигналы сохранности и вскрытия… … Словарь-справочник терминов нормативно-технической документации

Инструкция: Инструкция по эксплуатации стационарных свинцово-кислотных аккумуляторных батарей в составе ЭПУ на объектах ВСС России — Терминология Инструкция: Инструкция по эксплуатации стационарных свинцово кислотных аккумуляторных батарей в составе ЭПУ на объектах ВСС России: 4.11. Алюминий, калий, магний и натрий влияют главным образом на положительные электроды, способствуя … Словарь-справочник терминов нормативно-технической документации

АЦБПО ЭПУ — Альметьевская центральная база производственного обслуживания электропогружных установок техн … Словарь сокращений и аббревиатур

НТЦ ЭПУ — Научно технологический центр энергосберегающих процессов и установок ОИВТ РАН образование и наука, техн., энерг … Словарь сокращений и аббревиатур

НТЦ ЭПУ ОИВТ РАН — Научно технологический центр энергосберегающих процессов и установок Объединённого института высоких температур Российской академии наук образование и наука, РФ, техн., энерг … Словарь сокращений и аббревиатур

Источник: sokrasheniya.academic.ru